NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS # TECHNICAL NOTE No. 1467 EFFECT OF VARIATION IN DIAMETER AND PITCH OF RIVETS ON COMPRESSIVE STRENGTH OF PANELS WITH Z-SECTION STIFFENERS PANELS OF VARIOUS STIFFENER SPACINGS THAT FAIL BY LOCAL BUCKLING By Norris F. Dow and William A. Hickman Langley Memorial Aeronautical Laboratory Langley Field, Va. Washington October 1947 FOR REFERENCE NOT TO BE TAKEN FROM THIS ROOM LIBRARY COPY APR 3 0 1993 LANGLEY RESEARCH CENTER LIBRARY NASA HAMPTON, VIRGINIA # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE NO. 1467 EFFECT OF VARIATION IN DIAMETER AND PITCH OF RIVETS ON COMPRESSIVE STRENGTH OF PANELS WITH Z-SECTION STIFFENERS PANELS OF VARIOUS STIFFENER SPACINGS THAT FAIL BY LOCAL BUCKLING By Norris F. Dow and William A. Hickman SITMMARY An experimental investigation is being conducted to determine the effect of varying the rivet diameter and pitch on the compressive strength of flat 245-T aluminum-alloy Z-stiffened panels of the type for which design charts are available. The present part of the investigation is concerned with panels which have the smallest values of width-to-thickness ratio of the webs of the stiffeners given by the design charts and have such length that failure is by local buckling. The results showed that for these panels, regardless of their stiffener spacing, the compressive strengths increased appreciably with either an increase in the diameter of the rivets or a decrease in the pitch of the rivets. ## INTRODUCTION The design and analysis of sheet-stiffener panels for aircraft structures have been the subject of extensive experimental and theoretical investigations, but the determination of the size and pitch of rivets for attaching sheet to stiffener is a problem that has not been adequately solved. In reference 1 charts and procedures are presented for the design of Z-stiffened panels to carry a given intensity of loading at a given panel length. The test data on which these design charts were based, however, were obtained for an arbitrary diameter and pitch of the rivets. An investigation is therefore being conducted in the Langley structures research laboratory of the NACA to determine the effect of a variation in the rivet diameter and pitch on the strength of 24S-T aluminum-alloy panels with longitudinal Z-section stiffeners of the type for which the design charts of reference I were prepared. Results are presented of the third series of tests for the investigation. Some results of the first series of tests, reported in reference 2, are combined herein with the results of the third series. Since any number of combinations of rivet diameter and pitch are possible for any panel, the results of the tests made in these first three series can cover only a small region on the design charts of reference 1. The first series of tests (reference 2) covered the region in which the panels have the closest stiffener spacings, the smallest value of width-to-thickness ratio for the webs of the stiffeners, and such lengths that failure is by local buckling. The second series of tests (reference 3) covered the same region as the tests of reference 2 except for the limitation on the panel lengths. The third series of tests, with which the present paper is concerned, covers the region in which the panels have the smallest value of width-to-thickness ratio for the webs of the stiffeners, such lengths that failure is by local buckling, and no limitation on the stiffener spacing. Further testing will be required to determine the effect of rivet diameter and pitch on panels having higher values of width-to-thickness ratio for the webs of the stiffeners. #### SYMBOLS L length of specimen, inches ρ radius of gyration, inches- L/ρ slenderness ratio W width of specimen, inches bg spacing of stiffeners on sheet, inches bA width of attachment flange of stiffeners, inches by width of web of stiffeners, inches bF width of outstanding flange of stiffeners, inches ts ... thickness of sheet, inches tw thickness of web of stiffeners, inches | d. | diameter of rivets, inches | |----------------|--| | р | pitch of rivets, inches | | h | depth of countersink for rivets, inches | | αcλ | compressive yield stress for material, ksi | | σ _f | average compressive stress at failing load for any specimen, ksi | | c | coefficient of end fixity in Euler column formula | | Pi | compressive load per inch of panel width, kips per inch | | R | radius of bend | ## TEST SPECIMENS AND METHOD OF TESTING The specimens consisted of 24S-T aluminum-alloy panels having longitudinal Z-section stiffeners as shown in figures 1 and 2. $\frac{\text{DS}}{\text{FG}}$ = 25, 30, 35, 40, 50, 60, and 75) Seven stiffener spacings were investigated. The stiffeners on all panels were identical. Two thicknesses of sheet were used to give two ratios of stiffener $\frac{t_W}{t_G}$ = 1.00 and 0.63. The lengths of thickness to sheet thickness: the panels were so chosen $\left(\frac{L}{\rho}=20\right)$ that no column failures occurred. $\frac{b_W}{t_W} = 20$, $\frac{b_A}{t_W} = 9.5$, and $\frac{b_F}{b_W} = 0.4$ to give the panels from the design charts of reference 1 that have the smallest values of width-to-thickness ratio for the webs of the stiffeners. In order to allow for the larger rivets used in the present investigation, the value of for the panels was slightly larger than that used for the panels of reference 1 which had $\frac{t_W}{t_S} = 1.00$. The rivets used throughout the investigation were A17S-T flathead rivets (AN442AD). Both the diameter and pitch of the rivets were varied for each ratio of sheet thickness to stiffener thickness, as is shown in table 1. The minimum rivet pitch used in all cases was equal to three times the rivet diameter. On all panels the rivets were driven by the NACA flush-riveting process in which the rivet is inserted with the head opposite the countersunk end of the hole, the shank of the rivet is driven into the cavity formed by the countersink, and the excess material is removed with a milling tool. A countersink angle of 60° was used throughout. The depths of the countersink used are given in table 1. Ultimate compressive loads for the 348 specimens were determined in a hydraulic testing machine having an accuracy of one-half of 1 percent of the load. The ends of the specimens were ground accurately flat and parallel in a special grinder, and the method of alinement in the testing machine was such as to insure a uniform bearing over the ends of the specimens. The with-grain compressive yield strength $\sigma_{\rm Cy}$ of the material before forming was found to be as follows: 48.0 ksi (max.), 44.2 ksi (av.), and 40.4 ksi (min.). ## RESULTS AND DISCUSSION The results are presented in figure 3 and table 1. In figure 3, \overline{c}_f , calculated simply as the failing load divided by the cross-sectional area of the panel, is plotted against the sum of the thicknesses of sheet and stiffener $\frac{d}{t_S + t_W}$ in order to present the results in a manner similar to that used in references 2 and 3. Figure 3 shows that for all values of $\frac{t_W}{t_S}$ and $\frac{b_S}{t_S}$ investigated the compressive strengths increased with either an increase in the diameter of the rivets or a decrease in the pitch of the rivets. The type of failure also changed with increasing rivet diameter and decreasing rivet pitch, as is shown in figure 4. For the weakest riveting (see lower left corner of fig. 4), there was a fairly long wave—length bulging of the sheet away from the stiffeners accompanied by numerous rivet failures. As the strength of riveting increased (upward and toward the right on fig. 4) the wave length of the bulge decreased and fewer rivet failures occurred. In order to avoid this bulging altogether and to achieve a plate buckling pattern which varied sinusoidally along and across the sheet at failure, a very strong riveting was required. (See top part of fig. 4.) These results suggest that the conception of a limited critical range of the ratio of rivet pitch to sheet thickness (the "danger zone" tentatively established in reference 4) for which rivet failures may be expected to reduce the panel strength may be misleading. At least for rivet pitches smaller than those corresponding to the lower limit of the critical range of reference 4, and for the type of stiffeners tested, perhaps a somewhat truer conception is that the strength for local buckling failure always depends upon both the rivet pitch and diameter as well as upon such other variables as panel proportions. ### CONCLUDING REMARKS Results are presented of tests to determine the effect of varying the rivet diameter and pitch on the compressive strength of flat 24S-T aluminum-alloy Z-stiffened panels of the type for which design charts are available. The present part of the investigation is concerned with panels which have the smallest values of width-to-thickness ratio of the webs of the stiffeners given by the design charts and have such length that failure is by local buckling. The results showed that for these panels, regardless of their stiffener spacing, the compressive strengths increased appreciably with either an increase in the diameter of the rivets or a decrease in the pitch of the rivets. Langley Memorial Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va., August 1, 1947 #### REFERENCES - 1. Schuette, Evan H.: Charts for the Minimum-Weight Design of 24S-T Aluminum-Alloy Flat Compression Panels with Longitudinal Z-Section Stiffeners. NACA ARR No. L5F15, 1945. - 2. Dow, Norris F., and Hickman, William A.: Effect of Variation in Diameter and Pitch of Rivets on Compressive Strongth of Panels with Z-Section Stiffeners. I Panels with Close Stiffener Spacing That Fail by Local Buckling. NACA RB No. L5003, 1945. - 3. Dow, Norris F., and Hickman, William A.: Effect of Variation in Diameter and Pitch of Rivets on Compressive Strength of Panels with Z-Section Stiffeners, Panels of Various Lengths with Close Stiffener Spacing. NACA TN No. 1421, 1947. - 4. Levy, Samuel, McPherson, Albert E., and Ramberg, Walter: Effect of Rivet and Spot-Weld Spacing on the Strength of Axially Loaded Sheet-Stringer Panels of 24S-T Aluminum Alloy. NACA TN No. 856, 1942. TABLE 1.— NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS SHOWING EFFECTS OF VARYING RIVET PITCH AND RIVET DIAMETER | Diam. of rivets, d (in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, of (ksi) | P ₁
L/√C
(ks1) | |--------------------------|-------------------------------|--|--|----------------------------------| | | | = 1.60 in.; L = 10.40 : | _1 | | | | $\frac{t_W}{t_S} = 1.$ | 00; $\frac{b_8}{t_6} = 25^a$; $\frac{b_W}{t_W} = 20$ | | | | 1/16 | 0.035 | 3/16
3/8
5/8
15/16 | 43.050
41.450
^b 36.855
^b 38.380 | 1.233
1.180
1.013
1.093 | | | | 1 <u>5</u> | 29.300 | .840 | | | | 1 3 | 26.700 | .768 | | 3/32 | .040 | 9/32
3/8
5/8
15/16 | 44.300
43.500
538.070
540.035 | 1.303
1.245
1.069
1.140 | | | | 1 <u>5</u>
16 | 33.400 | .950 | | | | 13/4 | 30.700 | .891 | | 1/8 | .050 | 3/8
5/8
15/16 | 44.600
b43.735
b41.710 | 1.317
1.227
1.186 | | | | 15
16
13
14 | 34.750
32.200 | .990
.8 5 6 | | 5/32 | .060 | 15/32
5/8
15/16
15/16 | 45.000
43.870
40.500
36.100 | 1.318
1.197
1.142
1.032 | | | 1 | 14 | ъ33.800 | •973 | | 3/16 | .065 | 9/16
5/8
15/16 | 45.340
44.700
40.850 | 1.329
1.232
1.160 | | | | 1 <u>2</u>
16 | 37.600 | 1.077 | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ^b 33.800 | .968 | | 1/4 | .065 | 15/16
1.6
1.3
1.3
1.5/16
1.5/16
1.5/16
1.3
1.3 | 141.485
38.900 | 1.290 | | · | | 13 | 35.350 | 1.022 | apata for $\frac{D_8}{t_8} = 25$ is from reference 2. bAverage of two tests. TABLE 1 .- HONIMAL DIMENSIONS OF Z-STIFFERED PARELS AND TEST RESULTS - Continued | Diam. of
rivets,
d | Depth of countersink, | Pitch of rivets, | Average stress at failing load, | <u>P₁</u>
L/ √ 6 | |--------------------------|-----------------------|--|--|---| | (in.) | (in.) | (in.) | (ksi) | (ke1) | | | | 1.92 in.; L = 10.02 in
1.92 in.; L = 10.02 in
1.92 in.; L = 10.02 in
1.92 in.; L = 10.02 in | n.; W = 10.24 in.; | | | 1/16 | 0.035 | 3/16
3/8
5/8
15/16 | 41.640
39.900
36.550
35.200 | 1.086
1.042
.952
.927
.865 | | | | 1 <u>5</u>
16
13 | 33.1 40
32.310 | .845 | | 3/32 | .040 | 9/32
3/8
5/8
15/16 | 41.860
42.640
39.400
36.550 | 1.103
1.106
1.019
.938
.818 | | | | 15
16
14 | 31.830
28.160 | .727 | | 1/8 | .050 | 3/8
5/8
15/16
1 <u>5</u>
16
1 ³ / ₄ | 39.150
38.900
36.100
34.050
30.370 | 1.019
.992
.895
.876 | | 5/32 | .060 | 15/32
5/8
15/16
1 <u>5</u>
16 | 44.070
42.190
40.620
35.150 | 1.146
1.096
1.049
.908 | | 3/16 | .065 | 1/3
9/16
5/8
15/16
1/5 | 31.910
42.750
43.440
40.000
36.570 | 1.116
1.126
1.026
-933 | | | | 1층 | 33.100 | .858 | | 1/4 | · .065 | 3/4
15/16
1 <u>-5</u>
16 | 43.220
43.810
38.370 | 1.133
1.140
.984 | | - | | 16
1 <u>3</u> | 33.550 | .860 | TABLE 1 .- NOMINAL DIMENSIONS OF Z-STIFFENED PARKES AND TEST RESULTS - Continued | Diam. of rivets, | Depth of countersink, | Pitch of rivets, | Average stress at failing load, | P ₁
L/√6 | |------------------|-----------------------|---|---------------------------------|------------------------| | (in.) | (in.) | (in.) | (ksi) | (ksi) | | | _ | - | .84 in.; W = 11.84 in.; | | | ··· | t _S | = 1.00; $\frac{b_8}{t_8}$ = 35; $\frac{b_W}{t_W}$ | 20 | | | | | 3/16
3/8
5/8
15/16 | 38.420 | 0.928 | | | | 3/8
5/8 | 34.540
33.790 | .822
703 | | 1/16 | 0.035 | 15/16 | 32.340 | •792
•794 | | | | 1/5 | 28.310 | .687 | | | | 1 <u>5</u>
16
1 <u>3</u> | 25.940 | .631 | | | <u> </u> | 9/32 | 38.370 | .936 | | | | 3/8 | 38.600 | .936 | | 3/32 | .040 | 3/8
5/8
15/16 | 37.090
3 4. 980 | .900
.851 | | 3, 3- | | 1 <u>5</u> | 32.350 | .786 | | | | 33 | 26.990 | .6 5 3 | | | | 3/8 | 39.130 | -947 | | | 1 | 5/8
15/16 | 37.940 | .924 | | 1/8 | .050 | 15/16 | 39-370 | ·9 5 0 | | | | 1 <u>5</u> | 33.230 | .810 | | | | 13 | 28.950 | .702 | | · | | 15/32 | 40.080 | .978 | | | 060 | 1 5/8 | 38.990 | .944 | | 5/32 | .060 | 15/16 | 37.980 | .921 | | | | 15 | 33.230 | .810 | | | | 13/4 | 30.200 | •732 | | | | 9/16 | 38.400 | .898 | | - 12.0 | 1 | l <u>5</u> /8 | 39.210 | •953 | | 3/16 | .065 | 15/16 | 38.360 | .930 | | | | 15 | 34.240 | .832 | | | | 13/4 | 31.740 | .769 | | • | | 3/4 | 40.380 | •994 | | | | 15/16 | 40.480 | -979 | | 1/4 | .065 | 15/16 | 36.280 | .883 | | | | 15
16
13 | 32.590 | •794 | | | _ _ | | NATIONAL ADVISORY | | TABLE 1 .- NOMINAL DIMENSIONS OF Z-STIFFENED PARKLS AND TEST RESULTS - Continued | Diam. of
rivets,
d
(in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, $\overline{\sigma_f}$ (ksi) | P ₁
L/Vc
(kei) | |-----------------------------------|-------------------------------|---|---|---| | | - • | = 2.56 in.; L = 9.64 i
= 1.00; $\frac{b_S}{t_S}$ = 40; $\frac{b_W}{t_W}$ = | | | | 1/16 | 0.035 | 3/16
3/8
5/8
15/16
1 <u>5</u>
16
1 <u>3</u> | 37.940
36.370
31.040
29.160
26.180 | 0.868
.839
.719
.669
.601 | | 3/32 | .040 | 9/32
3/8
5/8
15/16
1 <u>5</u>
16
13 | 38.600
38.440
34.190
34.130
28.290 | .892
.886
.787
.784
.646 | | 1/8 | .050 | 3/8
5/8
5/16
15/16
13
13 | 38.660
37.280
34.920
30.400
27.700 | .886
.847
.807
.695 | | 5/32 | .060 | 15/32
5/8
15/16
1-5
16
13 | 38.360
37.700
37.580
31.620
28.590 | : 884
. 869
. 860
. 732
. 656 | | 3/16 | .065 | 9/16
5/8
15/16
15
16
13 | 37.960
39.070
37.440
32.930
30.180 | .872
.897
.867
.756 | | 1/4 | .065 | 3/4
15/16
15/16
13/4 | 38.510
38.460
34.820
31.030 | .894
.896
•777
.709 | TABLE 1 .- NOMINAL DIMENSIONS OF Z-STIFFERED PARELS AND TEST RESULTS - Continued | Diam. of rivets, d (in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, | P ₁
L/√c
(ks1) | |--------------------------|-------------------------------|---|--------------------------------------|---------------------------------| | | | | (ksi) | (151) | | | | = 3.20 in.; L = 9.28 | | | | | ty
ts | 1.00; \frac{bg}{t_g} = 50; \frac{bw}{t_w} = 2 | 0 | | | 1/16 | 0.035 | 3/16
3/8
5/8
15/16 | 34.840
33.260
32.270
30.260 | 0.713
.688
.694
.621 | | | | 1 <u>5</u>
16
13 | 25.080 | .511 | | | | 1/1 | 21.800 | .447 | | 3/32 | .040 | 9/32
3/8
5/8
15/16
1 <u>5</u>
16 | 35.510
33.820
34.320
31.080 | .768
.697
.731
.634 | | - | | 1 <u>5</u> | 28.620 | -590 | | | | 13 | 26.240 | .569 | | 1/8 | .050 | 3/8
5/8
15/16 | 35.520
34.490
33.980 | .722
.714
.698 | | | | 1 <u>5</u>
16 | 28.990 | •595 | | | | . 13 | 26.960 | · 55 ⁴ | | 5/32 | .060 | 15/32
5/8
15/16 | 34.930
35.010
33.750 | .720
.724
.696 | | | | 1 <u>.2</u>
16 | 32.330 | .666 | | | | 1 <u>5</u>
16
13 | 26.790 | .576 | | 3/16 | .065 | 9/16
5/8
15/16 | 35.590
35.420
34.340 | .742
.729
.703 | | | | 1 <u>5</u> | 31.680 | .651 | | | | 13/4 | 28.290 | .581 | | 1/4 | .065 | 3/4
15/16
1 2
16
13 | 34.700
34.590
33.760 | .718
.716
.720 | | - j ₹ | | 16
1 3
4 | 29.220 | .601 | TABLE 1 .- HOMINAL DIMENSIONS OF Z-STIFFERED PARELS AND TEST RESULTS -- Continued | Diam. of
rivets,
d
(in.) | Depth of countersink, h (in.) | Pitch of rivets, | Average stress at failing load, $\overline{\sigma}_f$ | $\frac{P_1}{L/\sqrt{6}}$ | |-----------------------------------|-------------------------------|--|---|-------------------------------| | (111.) | (14.7 | (2/ | (ksi) | (ksi) | | | | 3.840 in.; L = 8.92
1.00; bg = 60; by = 2 | | | | 1/16 | 0.035 | 3/16
3/8
5/8
15/16
15/16 | 31.870
31.720
29.610
25.340
23.230 | 0.629
.629
.585
.503 | | | | 16
13
14 | 20.760 | .416 | | 3/32 | .040 | 9/32
3/8
5/8
15/16 | 31.690
32.080
31.230
28.100
28.210 | .625
.640
.616
.557 | | | | 15
16
13 | 22.930 | -455 | | 1/8 | .050 | 3/8
5/8
15/16
1 <u>5</u>
16 | 32.260
31.650
. 31.450
27.080
24.740 | .642
.626
.623
.539 | | 5/32 | .060 | 15/32
5/8
15/16
15/16
16
14 | 32.470
32.570
31.770
29.940
25.840 | .636
.644
.632
.590 | | 3/16 | .065 | 9/16
5/8
15/16
1 <u>5</u> | 32.680
32.240
31.930
29.930 | .650
.633
.635
.603 | | | <u> </u> | 13 | 25.400 | .507 | | 1/4 | .065 | 3/4
15/16
15/16
134 | 32.480
32.420
31.260 | .646
.650
.625 | | ±/ + | .00 | 16
13
4 | 26.580 | .526 | TABLE 1. - NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued | Diam. of rivets, d (in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, of (ksi) | <u>P₁</u>
L/√c
(ks1) | |--------------------------|-------------------------------|---|---|-------------------------------| | | | | <u> </u> | () | | | - | = 4.80 in.; L = 8.48 | | | | | t s = 1 | 00; $\frac{bg}{t_g} = 75$; $\frac{bw}{t_w} = 20$ | | | | 1/16 | 0.035 | 3/16
3/8
5/8
15/16 | 29.610
28.150
27.810
26.250 | 0.572
.536
.523
.499 | | | | 15
16
13 | 2≱.000 | .458 | | | ļ | 14 | 21.320 | .404 | | 3/32 | .040 | 9/32
3/8
5/8
15/16 | 29.320
28.580
28.510
27.160 | .560
.549
.545
.520 | | | | | 26.100 | .501 | | | | 1-2
16
13 | 22.240 | .425 | | 1/8 | .050 | 3/8
5/8
15/16 | 29.850
28.830
28.970 | .569
.549
.553 | | | | 1 <u>5</u> | 25.800 | .494 | | | | 13 | 23.670 | -452 | | 5/32 | .060 | 15/32
5/8
15/16 | 30.010
29.340
29.320 | .565
.555
.561 | | | | 15 16 | 27.680 | .529 | | | | 13/4 | 23.550 | .452 | | 3/16 | .065 | 9/16
5/8
15/16 | 29.430
29.340
28.780 | .556
.563
.547 | | | | 15 | 28.150 | .541 | | | | 1 <u>5</u>
16
13 | 24.160 | .464 | | | | 3/ 4
15/16 | 30.100
29.650 | •573
•568 | | 1/4 | .065 | 1 <u>5</u>
16
13 | 27.660 | -530 | | | | 1 <u>3</u> | 24.970 | .478 | TABLE 1.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued | Diam. of rivets, d (in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, $\overline{\sigma}_f$ (ksi) | P ₁
L//C
(ks1) | |--------------------------|-------------------------------|---|---|---| | | | 2.55 in.; L = 9 | 9.44 in.; W = 13.39 i
W = 20 | n. ; | | 3/32 | 0.050 | 9/32
9/16
7/8
1 <u>7</u>
32
119
32
2 | 42.300
39.300
38.170
35.400
34.500 | 1.412
1.288
1.218
1.158
1.129 | | 1/8 | .060 | 3/8
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 43.800
40.400
39.700
37.800
35.500
30.240 | 1.445
1.321
1.263
1.237
1.167 | | 5/32 | .070 | 15/32
9/16
7/8
1.7
32
1 <u>19</u>
32 | b43.590
b42.335
41.050
37.850
35.750
31.800 | 1.431
1.388
1.310
1.236
1.168 | | 3/16 | .080 | 9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | b45.150
c41.150
38.800
38.150
31.900 | 1.451
1.327
1.263
1.253
1.042 | | 1/4 | .090 | 3/4
7/8
1 <u>7</u>
32
19
32
2 | 44.050
b43.000
40.700
39.800
34.100 | 1.471
1.378
1.329
1.307 | a Data for $\frac{b_S}{t_S} = 25$ is from reference 2. bAverage of two tests. cAverage of three tests. TABLE 1 .- NOMINAL DIMENSIONS OF Z-STIFFENED PARELS AND TEST RESULTS - Continued | Diam. of
rivets,
d
(in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, $\overline{\sigma}_{f}$ (ksi) | P ₁
L//c
(ks1) | |-----------------------------------|-------------------------------|--|---|---| | t _S ≠ | | 36 in.; L = 8.58
$\frac{b_S}{t_S} = 30; \frac{b_W}{t_W} = 30$ | in.; W = 15.94 in.; | | | 3/32 | 0.050 | 9/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 37.780
35.850
35.350
34.450
31.690
30.990 | 1.153
1.089
1.067
1.033
.957 | | 1/8 | .060 | 3/8
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 38.020
37.970
37.210
34.610
32.400
26.010 | 1.143
1.158
1.141
1.055
.976 | | 5/32 | .070 | 15/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 37.480
38.140
36.370
35.260
33.790
30.880 | 1.138
1.168
1.100
1.070
1.018 | | 3/16 | .080 | 9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 38.970
38.950
37.070
34.840
32.130 | 1.194
1.187
1.124
1.057 | | 1/4 | .090 | 3/4
7/8
1-7
32
1 <u>19</u>
32 | 39.630
38.790
38.540
36.960
33.630 | 1.200
1.178
1.165
1.124 | TABLE 1.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued | Diam. of rivets, d (in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, | P₁
L/√5 | |--------------------------|-------------------------------|--|---------------------------------|------------------------| | | | <u> </u> | (ksi) | (ksi) | | $t_S = 0$ | | | in.; W = 18.49 in.; | | | | ts = 0.63; | $\frac{b_{S}}{c_{S}} = 35; \frac{b_{W}}{t_{W}} = 20$ | | | | | | 9/32 | 37.340 | 1.157 | | | | 9/16
7/8 | 33.790
33.320 | 1.001
1.009 | | 3/32 | 0.050 | 17 | 31.480 | •953 | | | | 9/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 28.630 | .848 | | | | , 5,25 | 30.650 | .926 | | | | 3/8 | 36.040 | 1.074 | | | | 9/16
7/8 | 36.030
35.000 | 1.09 4
1.037 | | 1/8 | .060 | 17 | 33.880 | •999 | | | | 1 <u>7</u>
32
1 <u>19</u>
32 | 31.220 | .942 | | | | 2 | 29.230 | .8 9 4 | | | | 15/32 | 36.120 | 1.078 | | | | 9/16
7/8 | 34.890
35.930 | 1.037
1.096 | | 5/32 | .070 | 1.7 | 32.440 | .951 | | | | 7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 30.850 | .944 | | | | 2 | 30.430 | .919 | | | | 9/16
7/8 | 38.050 | 1.179 | | 4- 4 | | 7/8 | 36.270 | 1.105 | | 3/16 | .080 | 1 <u>1</u>
32 | 35.570 | 1.085 | | | | 1 <u>7</u>
32
1 <u>19</u>
32 | 32.850 | .962 | | | | 2 | 30.040 | .905 | | | | 3/4
7/8
1-7 | ^b 36.310
36.940 | 1.073
1.097 | | 1/4 | .090 | 17/32 | 35.080 | 1.037 | | | | 32
119
32 | 34.720 | 1.033 | | | | 2 | 31.730 | .952 | bAverage of two tests. TABLE 1 .- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued | Diam. of rivets, d (in.) | - | | Average stress at failing load, $\overline{\sigma}_{f}$ (ksi) 2.92 in.; W = 21.04 in | P ₁ L/VC (ksi) | |--------------------------|---------------------|---|---|---| | | t _S = 0. | $63; \frac{bs}{t_8} = 40; \frac{bw}{tw}$ | = 20 | | | 3/32 | 0.050 | 9/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 33.610
33.180
32.200
28.960
26.970
25.810 | 1.012
1.013
.937
.887
.833 | | 1/8 | .060 | 3/8
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 34.580
34.220
33.530
32.490
30.790
29.420 | .997
.997
.977
.952
.939 | | 5/32 | .070 | 15/32
9/16
7/8
1 <u>7</u>
32
119
32
2 | 33.480
34.370
34.410
33.390
29.700
27.810 | .963
1.001
1.062
1.027
.908 | | 3/16 | .080 | 9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 34.870
34.300
33.830
32.550
30.540 | 1.019
1.049
.995
.997
.945 | | 1/4 | .090 | 3/4
7/8
1 <u>7</u>
32
119
32
2 | 34.310
34.720
33.520
33.250
29.480 | 1.033
1.067
.981
1.019 | TABLE 1.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued | Diam. of rivets, d (in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, $\overline{\sigma_f}$ (ksi) | P ₁
L/√o
(ks1) | | | |--|-------------------------------|---|---|---------------------------------------|--|--| | $t_S = 0.102 \text{ in.; } b_S = 5.10 \text{ in.; } L = 7.40 \text{ in.; } W = 26.14 \text{ in.; }$ $\frac{t_W}{t_S} = 0.63; \frac{b_W}{t_S} = 50; \frac{b_W}{t_W} = 20$ | | | | | | | | 3/32 | 0.050 | 9/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 29.500
29.660
29.440
28.730
28.060
26.820 | 0.866
.876
.876
.883
.867 | | | | 1/8 | .060 | 3/8
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 29.460
29.340
30.710
29.790
^b 26.810
27.430 | .869
.876
.945
.920
.798 | | | | 5/32 | .070 | 15/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 29.620
29.860
31.110
30.380
27.960
28.960 | .873
.881
.941
.944
.841 | | | | 3/16 | .080 | 9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 32.830
31.120
30.510
29.890
27.340 | 1.033
.944
.943
.922
.826 | | | | 1/4 | .090 | 3/4
7/8
1 <u>7</u>
32
1 <u>19</u>
132
2 | 30.860
29.840
30.600
30.220
28.990 | .922
.883
.947
.934 | | | bAverage of two tests. TABLE 1.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued | Diam. of
rivets,
d
(in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, $\overline{\sigma}_f$ (ksi) | P ₁
L/√c (ksi) | | |--|-------------------------------|---|---|---------------------------------------|--| | $t_S = 0.102$ in.; $b_S = 6.12$ in.; $L = 6.96$ in.; $W = 31.24$ in.; $\frac{t_W}{t_S} = 0.63$; $\frac{b_S}{t_S} = 60$; $\frac{b_W}{t_W} = 20$ | | | | | | | 3/32 | 0.050 | 9/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 28.800
b29.080
b28.810
b27.760
27.060 | 0.876
.888
.876
.848
.837 | | | 1/8 | .060 | 3/8
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 29.460
29.200
28.670
26.570
^b 27.320
26.930 | .895
.893
.887
.828
.836 | | | 5/32 | .070 | 15/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 29.470
29.090
29.680
29.320
29.320 | .891
.890
.919
.909
.908 | | | 3/16 | .080 | 9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 29.830
28.760
29.420
28.540
30.260 | .918
.868
.908
.874 | | | 1/4 | .090 | 3/4
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 29.660
29.510
29.190
28.560
27.830 | .893
.899
.900
.882 | | bAverage of two tests. TABLE 1 .- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Concluded | Diam. of
rivets
d
(in.) | Depth of countersink, h (in.) | Pitch of rivets, p (in.) | Average stress at failing load, $\overline{\sigma}_{f}$ (ksi) | P ₁
L/VC
(ks1) | | | |---|-------------------------------|--|---|---|--|--| | $t_{\rm S} = 0.102 \text{ in.; } b_{\rm S} = 7.65 \text{ in.; } L = 6.42 \text{ in.; } W = 38.89 \text{ in.;}$ $\frac{t_{\rm W}}{t_{\rm S}} = 0.63; \frac{b_{\rm S}}{t_{\rm S}} = 75; \frac{b_{\rm W}}{t_{\rm W}} = 20$ | | | | | | | | 3/32 | 0.050 | 9/32
9/16
7/8
17
32
119
32
21.000
2 18.820 | | 0.829
.801
.751
.748
.661
.604 | | | | 1/8 | .060 | 3/8
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 26.520
26.610
24.430
23.720
22.005
19.880 | .851
.860
.784
.763
.710 | | | | 5/32 | .070 | 15/32
9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32 | 25.780
26.710
25.490
24.300
24.480
23.980 | .831
.841
.820
.781
.793 | | | | 3/16 | .080 | 9/16
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 27.550
26.000
25.070
25.140
21.380 | .924
.819
.806
.813
.681 | | | | 1/4 | .090 | 3/4
7/8
1 <u>7</u>
32
1 <u>19</u>
32
2 | 26.380
27.220
24.920
24.150
26.000 | .847
.854
.787
.778
.835 | | | Figure I.— Cross section of test specimens. | · | | | | • | |---|---|---|---|---| • | | | - | · | · | | Figure 2.- Typical specimens after failure. Figure 3-Variation in compressive strength of panels with rivet diameter. Figure 3.-Concluded. | | | | , | |---|---|--|----------------| | | | | • | - . | | | | | | | | • | | | | | | | | | | | | ٠ | • | | | | | | | | | | | | • | - | | | Figure 4.- Failure of panels having $\frac{b_S}{t_S} = 30$ and $\frac{t_W}{t_S} = 1.00$.